Abstract

Hexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, making the chemical functionalization of hBN challenging. Here, a simple, scalable strategy to fluorinate hBN using a direct gas-phase fluorination technique is reported. The nature of fluorine bonding to the hBN lattice and their chemical coordination are described based on various characterization studies and theoretical models. The fluorine functionalized hBN shows a bandgap reduction and displays a semiconducting behavior due to the fluorination process. Additionally, the fluorinated hBN shows significant improvement in its thermal and friction properties, which could be substantial in applications such as lubricants and thermal fluids. Theory and simulations reveal that the enhanced friction properties of fluorinated hBN result from reduced inter-planar interaction energy by electrostatic repulsion of intercalated fluorine atoms between hBN layers without significant disruption of the in-plane lattice. This technique paves the way for the fluorination of several other 2D structures for various applications such as magnetism and functional nanoscale electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.