Abstract

We have investigated the development of crystal morphology and phase in ultrafine titanium dioxide particles. The particles were produced by a droplet-to-particle method starting from propanolic titanium tetraisopropoxide solution, and calcined in a vertical aerosol reactor in air. Mobility size classified 40-nm diameter particles were conveyed to the aerosol reactor to investigate particle size changes at 20–1200°C with 5–1-s residence time. In addition, polydisperse particles were used to study morphology and phase formation by electron microscopy. According to differential mobility analysis, the particle diameter was reduced to 21–23-nm at 600°C and above. Precursor decomposition occurred between 20°C and 500°C. The increased mobility particle size at 700°C and above was observed to coincide with irregular particles at 700°C and 800°C and faceted particles between 900°C and 1200°C, according to transmission electron microscopy. The faceted anatase particles were observed to approach a minimized surface energy by forming {101} and {001} crystallographic surfaces. Anatase phase was observed at 500–1200°C and above 600°C the particles were single crystals. Indications of minor rutile formation were observed at 1200°C. The relatively stable anatase phase vs. temperature is attributed to the defect free structure of the observed particles and a lack of crystal–crystal attachment points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.