Abstract
The Cu+ and Ni+ binding energies of ethynylamine, ethynylphosphine and ethynylarsine have been calculated at the B3LYP/6-311 + G(2df,2p)//B3LYP/6-311G(d,p) level of theory. Significant differences between nitrogen-containing and phosphorus- or arsenic-containing compounds have been found regarding structural effects upon metal cation association. While for ethynylamine the global minimum of the potential energy surface corresponds to the complex in which the metal cation binds to the beta-carbon, for ethynylphosphine the most favourable process corresponds to phosphorus attachment. For ethynylarsine, the conventional pi-complex is the most stable one. This behavior resembles that found for the corresponding vinyl analogues, with the only exception being the arsenic derivative. The calculated Cu+ and Ni+ binding energies for attachment to the heteroatom follow a different trend, P > As > N, to that predicted for the corresponding proton affinities, P > N > As. Cu+ and Ni+ binding energies are almost identical when the metal cation binds to the heteroatom. However, Ni+ binding energies are slightly larger than Cu+ binding energies when the metal cation interacts with the C identical to C bond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.