Abstract
Manganese complexes exhibit a rich redox chemistry, usually accompanied by structural reorganization during the redox processes often followed by ligand dissociation or association. The push-pull ligand 2,6-diguanidylpyridine (dgpy) stabilizes manganese in the oxidation states +II, +III, and + IV in the complexes [Mn(dgpy)2]n+ (n = 2-4) without change in the coordination sphere in the condensed phase [Heinze et al., Inorganic Chemistry, 2022, 61, 14616]. In the condensed phase, the manganese(IV) complex is a very strong oxidant. In the present work, we investigate the stability and redox activity of the MnIV complex and its counterion (PF6-) adducts in the gas phase, using two modified 3D Paul ion trap mass spectrometers. Six different cationic species of the type [Mnx(dgpy)2(PF6)y]n+ (x = II, III, IV, y = 0-3, n = 1-3) could be observed for the three oxidation states MnIV, MnIII, and MnII, of which one observed complex also contains a reduced dgpy ligand. MnII species showed the highest relative stability in collision induced dissociation and UV/vis photo dissociation experiments. The lowest stability is observed in the presence of one or more counterions, which correlates to a lower total charge n+. Gas phase UV/vis spectra show similar features as the condensed phase spectra only differing in relative band intensities. The strongly oxidizing MnIV complex reacts with triethylamine (NEt3) in the gas phase to give MnIII, while MnIII species show little reactivity toward NEt3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.