Abstract

The gas-phase basicities (GB) of histidine, lysine, and di- and triglycyl peptides containing either one histidine or one lysine residue have been determined. In all, 12 compounds were examined in a Fourier transform ion cyclotron resonance mass spectrometer. The GBs of the biomolecules were evaluated by proton transfer reactions employing a range of reference compounds with varying gas-phase basicities. In addition, the GBs were determined by using the kinetic method of collision-induced dissociation on a proton-bound dimer containing the peptide and a reference compound. The GBs of histidine and lysine were both found to be 220.8 kcal/mol via proton transfer reactions. The kinetic method experiments, including dissociation of a proton-bound dimer containing both histidine and lysine, also suggest equivalent GBs for these amino acids. However, the small peptides containing lysine are generally more basic than the corresponding histidine-containing peptides. For the peptides, the data suggest that the protonation site is on the basic side chain functional group of the histidine or lysine residues. The GBs of the di- and tripeptides are dependent upon the location of the basic residue. For example, the GBs of the tripeptides glycylglycyl-L-lysine (GlyGlyLys) and L-lysylglycylglycine (LysGlyGly) were both determined to be 230.7 kcal/mol while a GB of kcal/mol was obtained for glycyl-L-lysylglycine (GlyLysGly). A similar GB trend is seen with the histidine-containing tripeptides. Generally, the GBs obtained by using the kinetic method are slightly higher than those obtained by deprotonation reactions; however, the trends in relative GB values are essentially the same with the two techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.