Abstract

Fibrosis is defined as the pathological progress of excessive extracellular matrix (ECM), such as collagen, fibronectin, and elastin deposition, as the regenerative capacity of cells cannot satisfy the dynamic repair of chronic damage. The well-known features of tissue fibrosis are characterized as the presence of excessive activated and proliferated fibroblasts and the differentiation of fibroblasts into myofibroblasts, and epithelial cells undergo the epithelial-mesenchymal transition (EMT) to expand the number of fibroblasts and myofibroblasts thereby driving fibrogenesis. In terms of mechanism, during the process of fibrosis, the activations of the TGF-β signaling pathway, oxidative stress, cellular senescence, and inflammatory response play crucial roles in the activation and proliferation of fibroblasts to generate ECM. The deaths due to severe fibrosis account for almost half of the total deaths from various diseases, and few treatment strategies are available for the prevention of fibrosis as yet. Recently, numerous studies demonstrated that three well-defined bioactive gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), generally exhibited anti-inflammatory, antioxidative, antiapoptotic, and antiproliferative properties. Besides these effects, a number of studies have reported that low-dose exogenous and endogenous gasotransmitters can delay and interfere with the occurrence and development of fibrotic diseases, including myocardial fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, diabetic diaphragm fibrosis, and peritoneal fibrosis. Furthermore, in animal and clinical experiments, the inhalation of low-dose exogenous gas and intraperitoneal injection of gaseous donors, such as SNAP, CINOD, CORM, SAC, and NaHS, showed a significant therapeutic effect on the inhibition of fibrosis through modulating the TGF-β signaling pathway, attenuating oxidative stress and inflammatory response, and delaying the cellular senescence, while promoting the process of autophagy. In this review, we first demonstrate and summarize the therapeutic effects of gasotransmitters on diverse fibrotic diseases and highlight their molecular mechanisms in the process and development of fibrosis.

Highlights

  • Fibrosis is a well-known pathological process in which several extracellular matrixes (ECMs), such as collagen, fibronectin, and elastin, accumulate abnormally in chronic inflamed and damaged tissues

  • The critical molecules and signaling pathways involved in fibrosis mainly consist of transforming growth factor β (TGF-β), connective tissue growth factor (CTGF/CCN2), platelet-derived growth factor (PDGF), endothelin 1 (ET-1), and the Wnt, Hedgehog, and Notch signaling pathways [4,5,6,7,8,9,10]

  • Many stress responses and molecular targets are involved in the formation and development of fibrosis

Read more

Summary

Introduction

Fibrosis is a well-known pathological process in which several extracellular matrixes (ECMs), such as collagen, fibronectin, and elastin, accumulate abnormally in chronic inflamed and damaged tissues. The mechanisms of various fibrotic diseases are different, the common feature of tissues affected by fibrosis is the presence of excessive activated fibroblasts and transformed myofibroblasts [3]. These cells have unique biological functions, including the secretion of fibrous type I and type III collagen and the expression of α-smooth muscle actin (α-SMA) [3]. Nitrogen monoxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three best-known gasotransmitters, and all these three gases have been demonstrated to possess antioxidative, anti-inflammatory, antiapoptotic, and antiproliferative properties [12] Besides that, these gasotransmitters are gradually being known by many researchers for exploring their molecular mechanisms in fibrotic diseases. We first try to discuss and summarize the therapeutic mechanisms of gasotransmitters in diverse fibrotic diseases

Molecular and Cellular
Protective Effects of Gasotransmitters in Fibrotic Diseases
Conclusion and Perspectives
Findings
Conflicts of Interest
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call