Abstract

Abstract Gas-liquid volumetric liquid-phase mass transfer coefficient (k L a) was studied in a slurry bubble column at the conditions mimicking Fischer–Tropsch synthesis. To avoid the hydrodynamic disturbances due to the gas switching, oxygen enriched air dynamic absorption method was used. Influence of reactor models (CSTR, ADM and RCFD) on the volumetric mass transfer coefficient was investigated. Effect of operating pressure, superficial gas velocity and solids loading were investigated. From the reactor models investigated, it is recommended to use ADM model for k L a study. If the CSTR model is used, applicability of the model should be checked. With increase in the superficial gas velocity and operating pressure, volumetric liquid-phase mass transfer coefficient increases, while it decreases with the solids loading corroborating with the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.