Abstract

Biochar may enhance soil fertility and carbon (C) sequestration but there is still a lack of comprehensive understanding of its effects on soil microbial communities and functioning. This study tested the differential effects of two doses (6–8 and 0.8–1.4 t ha−1 for High and Low doses, respectively) of wheat straw gasification biochar (GBC) and fresh straw incorporated as soil amendments into an agricultural field in Denmark. Soils were analysed three months after the amendments for pH, total organic matter, microbial biomass (ATP), ten enzymatic activities, catabolic potential by substrate-induced respiration (MicroResp™), soil toxicity test (BioTox™) and bacterial community structure (Illumina 16S rRNA gene sequencing). No significant effect of biochar treatment was observed regarding ATP content, catabolic community profiles and soil toxicity. The higher dose of GBC increased phenol oxidase activity and soil pH, and decreased the cellulase activity. No major effect of high dose GBC was observed on the soil community diversity, and only minor effect on the community composition, with an increase in the relative abundance of a single OTU associated with Acidobacteria_Gp16. Addition of low dose of GBC caused an increase in the relative abundance of the rare members in the microbial communities thus increasing the diversity of soil microorganisms. A comparable effect was observed with the addition of fresh straw. Overall, our results indicated that GBC as soil amendment had a limited effect on the functional and structural diversity of soil microbial communities in a Danish temperate agroecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.