Abstract

We demonstrate a method for the calibration-free and quantitative analysis of small volumes of gaseous samples. A 10 m hollow-core photonic bandgap fiber is used as the sample cell (volume = 0.44 $\mu$ L) and is placed inside a linear resonator setup. The application of cavity ring-down spectroscopy and in consideration of rather small coupling losses, this leads to an increased effective optical path length of up to 70 m. This implies a volume per optical interaction path length of 6.3 nL $\cdot$ m $^{-1}$ . We used tunable diode laser spectroscopy at 760 nm and scanned the absorption for oxygen sensing. The optical loss due to sample absorption is obtained by measuring the ring-down time of light propagating inside the cavity. The resultant absorption coefficient shows a discrepancy of only 5.1% comparing to the HITRAN database. This approach is applicable for sensitive measurements if only submicroliter sample volumes are available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.