Abstract

Vapor phase carbon (C)-reduction-based syntheses of C nanotubes and graphene, which are highly functional solid C nanomaterials, have received extensive attention in the field of materials science. This study suggests a revolutionary method for precisely controlling the C structures by oxidizing solid C nanomaterials into gaseous products in the opposite manner of the conventional approach. This gaseous nanocarving enables the modulation of inherent metal assembly in metal/C hybrid nanomaterials because of the promoted C oxidation at the metal/C interface, which produces inner pores inside C nanomaterials. This phenomenon is revealed by investigating the aspects of structure formation with selective C oxidation in the metal/C nanofibers, and density functional theory calculation. Interestingly, the tendency of C oxidation and calculated oxygen binding energy at the metal surface plane is coincident with the order Co > Ni > Cu > Pt. The customizable control of the structural factors of metal/C nanomaterials through thermodynamic-calculation-derived processing parameters is reported for the first time in this work. This approach can open a new class of gas-solid reaction-based synthetic routes that dramatically broaden the structure-design range of metal/C hybrid nanomaterials. It represents an advancement toward overcoming the limitations of intrinsic activities in various applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.