Abstract

The kinetics of sustained-load subcritical crack growth in hydrogen were determined for 18Ni(200) and 18Ni(250) maraging steels over a range of hydrogen pressures and temperatures. Crack growth in each steel was characterized by an apparent threshold stress intensity, a domain where the growth rate increased sharply with stress intensity (K) (Stage I), and a range where the growth rate was independent ofK (Stage II). The rate-limited Stage II crack growth in these steels exhibited three distinct regions of temperature dependency, with a different isothermal pressure dependence in each region. In the low temperature region, Stage II crack growth was thermally activated with δH = 18.2 ±1.7 kj/mol; (δH being independent of hydrogen pressure and yield strength). The growth rates at a givenK were proportional to the square root of hydrogen pressure. In the intermediate temperature region, Stage II growth rates increased at slower rates, passed through a maximum and then decreased with increasing temperature. Within this region, the pressure dependence for crack growth increased from 1/2-power to 2.0-power with increasing temperature. Above a transition temperature, each grade of maraging steel became essentially immune to gaseous hydrogen embrittlement for the hydrogen pressure range considered. The transition temperature was strongly affected by yield strength and hydrogen pressure. Plausible explanations for these phenomenological results are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.