Abstract

In recent decades, most big cities in China have experienced severe air pollution accompanied by rapid economic and social development. Analysis of measurements of air pollutants form a fundamental basis for understanding the characteristics of air pollution and are important references for policy-making. In this study, five-year measurements of air pollutants at 6 sites in Lhasa, a typical high altitude big city in southwestern China, were analyzed from January 2013 to December 2017. Air pollutants at all the 6 sites in Lhasa generally displayed similar patterns of both diurnal and monthly variations, indicating the mixed atmospheric environment and the overall effect of the meteorological conditions in the city. Spatially, the air pollutant concentrations at the 6 sites were generally characterized by high concentrations of SO2, NO2, CO, PM10 and PM2.5 at urban sites and high O3 concentrations at suburban sites. In comparison with other provincial capital cities in China, Lhasa has low concentrations of air pollutants, except for O3, and thus, better air quality. Although Lhasa has experienced rapid urbanization and economic development, air pollution conditions have remained rather stable and even decreased slightly in term of particular air pollutants. We suggested that the relatively isolated location, low air pollutant emissions associated with its industrial structure and renewable energy consumption, and effective air pollution control measures, collectively contributed to the synchronous improvement of the economy and air quality in Lhasa. Such “Lhasa pattern” may serve as a positive example for other regional hub cities in China and beyond that experience socioeconomic development and simultaneously seek to improve air quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.