Abstract

A two-dimensional inlet of external compression with the increased flow rate factor at high supersonic velocities is constructed by the method of gasdynamic design. Its feature is that a flow with the initial oblique shock wave and the subsequent centered isentropic compression wave is formed over the external compression ramp of the inlet. These waves interact with one another so that a resulting stronger oblique shock wave and a velocity discontinuity arise in front of the entrance to the inlet internal duct. An example of an inlet configuration with the design flow regime corresponding to the Mach number Md = 7 is considered. The characteristics of this inlet were obtained in the range of the free-stream Mach numbers M = 4–7 with the use of a Navier—Stokes code for turbulent flow. They are compared with characteristics of an equivalent conventional shocked inlet. As computations have shown, the inlet with the isentropic compression wave has much higher values of flow rate factor φ at Mach numbers M < Md. So, for example, at M = 4 the value φ ≈ 0.72 for it is by 33 % higher in comparison with φ ≈ 0.54 for the equivalent shocked inlet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call