Abstract
Cardiomyocyte death is one of the major mechanisms contributing to the development of myocardial infarction (MI) and myocardial ischemia/reperfusion (MI/R) injury. Due to the limited regenerative ability of cardiomyocytes, understanding the mechanisms of cardiomyocyte death is necessary. Pyroptosis, one of the regulated programmed cell death pathways, has recently been shown to play important roles in MI and MI/R injury. Pyroptosis is activated by damage-associated molecular patterns (DAMPs) that are released from damaged myocardial cells and activate the formation of an apoptosis-associated speck-like protein containing a CARD (ASC) interacting with NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), resulting in caspase-1 cleavage which promotes the activation of Gasdermin D (GSDMD). This pathway is known as the canonical pathway. GSDMD has also been shown to be activated in a non-canonical pathway during MI and MI/R injury via caspase-4/5/11. Suppression of GSDMD has been shown to provide cardioprotection against MI and MI/R injury. Although the effects of MI or MI/R injury on pyroptosis have previously been discussed, knowledge concerning the roles of GSDMD in these settings remains limited. In this review, the evidence from invitro, invivo, and clinical studies focusing on cardiac GSDMD activation during MI and MI/R injury is comprehensively summarized and discussed. Implications from this review will help pave the way for a new therapeutic target in ischemic heart disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.