Abstract
We present results on low beam divergence, low threshold current GaSb-based quantum-well diode lasers emitting in the 1.9 - 2.4 μm wavelength range. By carefully designing the active quantum-well region, low threshold current densities in the range of 148 to 190 A/cm<sup>2</sup> could be achieved in the entire wavelength range. A novel structure for the epitaxial waveguide was designed and realized experimentally, leading to a reduced beam divergence in the fast axis of 44° full width at half maximum (FWHM), compared to 67° FWHM of a conventional broadened waveguide design. This improvement was achieved without any sacrifice in the laser performance, i.e. the novel laser structure showed the same threshold current and differential quantum effciency as the standard one. Ridge-waveguide lasers employing the new waveguide design and emitting at 2.3 μm were operated in an external cavity configuration. Due to the improved coupling effciency of the laser beam into the collimating optic, a wide tuning range of 130nm could be achieved, limited only by the gain bandwidth of the active material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.