Abstract

We studied experimentally the discharge of a vertical silo filled by spherical glass beads and assisted by injection of air from the top at a constant flow rate, a situation which has practical interest for nuclear safety or air-assisted discharge of hoppers. The measured parameters are the mass flow rate and the pressure along the silo, while the controlled parameters are the size of particles and the flow rate of air. Increasing the air flow rate induces an increase in the granular media flow rate. Using a two-phase continuum model with a frictional rheology to describe particle-particle interactions, we reveal the role played by the air pressure gradient at the orifice. Based on this observation we propose a simple analytical model which predicts the mass flow rate of a granular media discharged from a silo with injection of gas. This model takes into account the coupling with the gas flow as well as the silo geometry, position and size of the orifice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.