Abstract

Liver fibrosis consists in the accumulation of extracellular matrix components mainly derived from activated hepatic stellate cells. This is commonly the result of chronic liver injury repair and represents an important health concern. As liver biopsy is burdened with many drawbacks, not surprisingly there is great interest to find new reliable noninvasive methods. Among the many are new potential fibrosis biomarkers under study, some of the most promising represented by the growth arrest-specific gene 6 (Gas6) serum protein and its family of tyrosine kinase receptors, namely, Tyro3, Axl, and MERTK (TAM). Gas6/TAM system (mainly, Axl and MERTK) has in fact recently emerged as an important player in the progression of liver fibrosis. This review is aimed at giving an overall perspective of the roles played by these molecules in major chronic liver diseases. The most promising findings up to date acknowledge that both Gas6 and its receptor serum levels (such as sAxl and, probably, sMERTK) have been shown to potentially allow for easy and accurate measurement of hepatic fibrosis progression, also providing indicative parameters of hepatic dysfunction. Although most of the current scientific evidence is still preliminary and there are no in vivo validation studies on large patient series, it still looks very promising to imagine a possible future prognostic role for these biomarkers in the multidimensional assessment of a liver patient. One may also speculate on a potential role for this system targeting (e.g., with small molecule inhibitors against Axl) as a therapeutic strategy for liver fibrosis management, always bearing in mind that any such therapeutic approach might face toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.