Abstract
Effective control of both cell survival and cell proliferation is critical to the prevention of oncogenesis and to successful cancer therapy. Using functional expression cloning, we have identified GAS5 (growth arrest-specific transcript 5) as critical to the control of mammalian apoptosis and cell population growth. GAS5 transcripts are subject to complex post-transcriptional processing and some, but not all, GAS5 transcripts sensitize mammalian cells to apoptosis inducers. We have found that, in some cell lines, GAS5 expression induces growth arrest and apoptosis independently of other stimuli. GAS5 transcript levels were significantly reduced in breast cancer samples relative to adjacent unaffected normal breast epithelial tissues. The GAS5 gene has no significant protein-coding potential but expression encodes small nucleolar RNAs (snoRNAs) in its introns. Taken together with the recent demonstration of tumor suppressor characteristics in the related snoRNA U50, our observations suggest that such snoRNAs form a novel family of genes controlling oncogenesis and sensitivity to therapy in cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.