Abstract

AbstractA key parameter governing the secular evolution of protoplanetary disks is their outer radius. In this paper, the feedback of realistic dust grain size distributions onto the gas emission is investigated. Models predict that the difference of dust and gas extents as traced by CO is primarily caused by differences in the optical depth of lines vs continuum. The main effect of radial drift is the sharp decrease in the intensity profile at the outer edge. The gas radial extent can easily range within a factor of 2 for models with different turbulence. A combination of grain growth and vertical settling leads to thermal de-coupling between gas and dust at intermediate scale-heights. A proper treatment of the gas thermal structure within dust gaps will be fundamental to disentangle surface density gaps from gas temperature gaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.