Abstract

The incompatibility of the dual role of air as a combustion and heat-transfer fluid is apparent in the unbalance of convective heat transfer in a water boiler. Pressurized combustion has, since the middle of the nineteenth century, been postulated as a means of increasing the gas-side convective heat transfer to more nearly correspond with the water-side rate. Gas turbines, in the form of turbine-driven supercharged boilers, have been made, but without significant commercial success, in Europe and America. Modern gas turbines are employed in total-energy systems but because of the premium value of their shaft power output, additional heat exchangers must have the minimum pressure loss and therefore conventional heat-transfer criteria apply. Small turbine-driven superchargers are now mass produced for automotive diesel engines and particularly with the availability of natural gas the feasibility of pressurized combustion by their use justifies re-appraisal. Although these turbochargers have little value as gas-turbine power units the margin of turbine output over compressor power absorption can be employed to improve heat-exchanger convective heat-transfer rates significantly. The provision of a second compressor in the rotor system enables a stoichiometric air and gaseous fuel charge to be induced into a simple pre-mixed combustor thus preserving the low-cost aspect of the turbocharger and providing improved control and safety in a very durable gas-turbine device. The addition of a simple after-burner allows total combustion at relatively low excess air rates. The arguments leading to the foregoing design are presented and some of the more important product developments are described. Examination of the wider application potential of such low-cost turbomachinery indicates prospects for their employment in diverse uses particularly where high heat-transfer rates are desirable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.