Abstract

ABSTRACTThis article reports synthesis and structure property studies of block copolyimides synthesized using diamino room temperature ionic liquids (RTIL) as diamine monomers. Specifically, polyimide oligomers of different lengths were synthesized using 2,2‐bis (3,4‐carboxylphenyl) hexafluoropropane dianhydride (6FDA) and diamino RTIL (1,3‐di(3‐aminopropyl) imidazolium bis[(trifluoromethyl) sulfonyl] imide). These oligomers were copolymerized with 6FDA and m‐phenylenediamine (MDA) using in situ polymerization to form (6FDA‐RTIL)‐(6FDA‐MDA) block copolyimides. The impact of the length and relative concentration of 6FDA‐RTIL oligomer in the copolymer on the resulting thermal, physical, and gas transport properties was monitored. As the concentration of the 6FDA‐RTIL segments increased, the backbone of the block copolyimides became more flexible resulting in a decrease in the glass transition temperature (Tg) and an increase in the density. The permeabilities of the RTIL containing copolyimides were consistently lower than those of the base polyimide, 6FDA‐MDA, with some increase in selectivities. Interestingly, the permeabilities of films produced with the low molecular weight oligomers were very different than those produced with same composition of the high molecular weight oligomers. This may be indicative of very different morphologies within these copolyimides. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43077.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.