Abstract

To solve the low thermal stability of polyolefin membranes, our group developed porous polymers using cellulose acetate (CA) material. The formation of pores in CA involved creating plasticized regions within the CA membrane using additives. By applying gas pressure to these regions, a CA/glycolic acid membrane could be prepared with a small average pore size and high porosity. According to the porosimeter measurement, the average pore size of the membrane was 150 nm, and the porosity was 77%. SEM observations of the surface and cross-section of the CA/glycolic acid membrane confirmed the abundant distribution of fine pores. Furthermore, IR analysis revealed the removal of glycolic acid from the membrane after pore formation, indicating its interaction with CA during the process of gas permeation. Additionally, TGA analysis demonstrated a decrease in thermal stability due to the formation of numerous pores after gas permeation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call