Abstract
AbstractIn inland water covering lakes, reservoirs, and ponds, the gas exchange of slightly soluble gases such as carbon dioxide, dimethyl sulfide, methane, or oxygen across a clean and nearly flat air‐water interface is routinely described using a water‐side mean gas transfer velocity , where overline indicates time or ensemble averaging. The micro‐eddy surface renewal model predicts , where is the molecular Schmidt number, is the water kinematic viscosity, and is the waterside mean turbulent kinetic energy dissipation rate at or near the interface. While has been reported across a number of data sets, others report large scatter or variability around this value range. It is shown here that this scatter can be partly explained by high temporal variability in instantaneous around , a mechanism that was not previously considered. As the coefficient of variation in increases, must be adjusted by a multiplier that was derived from a log‐normal model for the probability density function of . Reported variations in with a macro‐scale Reynolds number can also be partly attributed to intermittency effects in . Such intermittency is characterized by the long‐range (i.e., power‐law decay) spatial auto‐correlation function of . That varies with a macro‐scale Reynolds number does not necessarily violate the micro‐eddy model. Instead, it points to a coordination between the macro‐ and micro‐scales arising from the transfer of energy across scales in the energy cascade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.