Abstract

The gas temperature in an electrode microwave discharge in hydrogen at pressures of 1–8 torr and input powers of 20–90 W is determined from the relative intensities of the rotational lines of the electronically excited molecules of the Fulcher α system of molecular hydrogen. It is found that the gas temperature in the discharge is no higher than 800 K over the entire range of the experimental conditions under study. For this reason, plasma resonance cannot be regarded as a factor determining the physical processes in the discharge over the entire pressure range. Since the discharge unit is a nonuniform gas-dynamic system (the gas is fed through a small hole into a chamber of limited size), there is a possibility of generating vortex flows that intensively mix the gas. This results in a uniform distribution of the gas temperature throughout the entire volume of the spherical plasma structure produced in the experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.