Abstract

Six petroleum source beds have been developed in the Kuche Depression (also known as “Kuqa Depression”) of the Tarim Basin, including three lacustrine source rocks (Middle and Upper Triassic Kelamayi and Huangshanjie formations, and Middle Jurassic Qiakemake Formation) and three coal measures (Upper Triassic Taliqike Formation, Lower Jurassic Yangxia Formation, and Middle Jurassic Kezilenuer Formation). While type I–II organic matter occurs in the Middle Jurassic Qiakemake Formation (J 2q), other source beds contain dominantly type III organic matter. Gas generation rates and stable carbon isotopic kinetics of methane generation from representative source rocks collected in the Kuche Depression were measured and calculated using an on-line dry and open pyrolysis system. Combined with hydrocarbon generation history modelling, the formation and evolution processes of the Jurassic–Triassic highly efficient gas kitchens were established. High sedimentation rate in the Neogene and the fast deposition of the Kuche Formation within the Pliocene (5 Ma) in particular have led to the rapid increase in Mesozoic source rock maturity, resulting in significant dry gas generation. The extremely high gas generation rates from source kitchens have apparently expedited the formation of highly efficient gas accumulations in the Kuche Depression. Because different Mesozoic source rocks occur in different structural belts, the presence of both lacustrine and coaly gas kitchens during the Cenozoic time can be identified in the Kuche Depression. As shown by the chemical and stable carbon isotope compositions of the discovered gases, the formation of the giant gas pools in the Kela 2, Dina 2, Yaha and Wucan 1 have involved very different geological processes due to the difference in their gas source kitchens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call