Abstract

An extensive TEM study of the microstructure of TIP-30 Be implanted with 3 and 10 keV D ions to fluences, Φ in the range from 3 × 1020 to 8 × 1021D/m2 at temperatures, Tirr = 300, 500 and 700 K has been carried out. Depth distributions of separate D atoms and D2 molecules have been investigated by means of SIMS and RGA methods, correspondingly. D ion irradiation, accompanied by blistering, gives rise to destructions dependent mainly on Tirr. Irradiation at 300 K leads to the formation of tiny D2 bubbles of 1 run in size (reminiscent of He bubbles in Be). At Tirr ≥ 500 K, along with small facetted bubbles, the development of larger oblate cavities occurs accumulating most of injected deuterium and providing for a much higher gas swelling compared to that at 300 K. D (He) ion implantation leads to the enhanced growth of microcrystalline layers of cph-BeO oxide with a microstructure differing from that on the electropolished Be surface. Based on the analysis of experimental data deuterium reemission, thermal desorption and trapping in defects are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.