Abstract

Natural gas in the Permian-Triassic Khuff Formation of Abu Dhabi contains variable amounts of H2S. Gas souring occurred through thermochemical sulfate reduction of anhydrite by hydrocarbon gases. Sour gas is observed only in reservoirs hotter than a critical reaction temperature: 140°C. Petrographic examination of core from a wide depth range showed that the anhydrite reactant has been replaced by calcite reaction product only in samples deeper than 4300 m. Gas composition data show that only reservoirs deeper than 4300 m contain large quantities of H2S (i.e., >10%). At present-day geothermal gradients, 4300 m is equivalent to 140°C. Fluid inclusion analysis of calcite reaction product has shown that calcite growth only became significan at temperatures greater than 140°C. Thus, three independent indicators all show that 140°C is the critical temperature above which gas souring by thermochemical sulfate reduction begins. The previously suggested lower temperature thresholds for other sour gas provinces (80-130°C) derive from gas composition data that may not allow adequately either for the reservoir temperature history or for the migration of gas generated at higher temperatures into present traps. Conversely, published proposals for higher threshold temperature (180-200°C) derive from short duration experimental data that are not easily extrapolated to geologically realistic temperatures and time scales. Therefore, the temperature of 140°C derived from our study of the Khuff Formation may be th best estimate of temperature required for in-situ thermochemical sulfate reduction to produce the high H2S concentrations encountered in deep carbonate gas reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.