Abstract

A new type of gas-solid two-phase flow-based triboelectric nanogenerator (WS-TENG) is fabricated for collecting triboelectric energy in wind-blown sand environment, producing direct current output, and harvesting kinetic energy of continuous wind-blown sand flow. A single-electrode mode WS-TENG is designed with polytetrafluoroethylene (PTFE) as friction layer and used to investigate triboelectrification between wind-blown sand flow and friction layer surface using sediment-air injection method. Results showed that both short-circuit current (Isc) and output voltage (Vo) are direct current modes that increase with increasing impact angle and sand feed rate and reach 2 µA and 55 V, respectively, at a flow velocity of 18 m·s−1 to charge capacitor and light up five LEDs as a wind-blown sand flow kinetic energy collector. Moreover, output performance of WS-TENG can be improved further by pre-charging the floating sand using a PTFE pipe due to coupling of electrostatic induction and triboelectrification effect. WS-TENG was also applied as a self-powered sensor for aeolian sand transport rate in harsh sandstorm environment, thereby indicating its potential application for tracking the evolution of aeolian desertification and developing practical sensing applications of gas-solid two-phase flow-based TENG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call