Abstract

This paper examines the turbulent flow of heavy particles in horizontal channels and pipes. Calculations for the fluid are performed within an Eulerian frame of reference, while the particulate phase is considered as several continuous polydisperse media, each constituting a separate phase. The interparticle collisions include two mechanisms: collisions with sliding friction and collisions without sliding friction. The collisions of particles are accounted for, by collisions due to the difference in the average and fluctuating velocities of the several particulate fractions. This work introduces an original model for the closure for the mass and momentum equations based on the collisions as well as an original description of the particle motion in a horizontal channel, by introducing the decomposition of the particle-phase motion into two types of particle phases: falling and rebounding particles. The decomposition allows the correct calculation of the influence of the wall on the motion of particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.