Abstract
In chemical and oil industry gas/shear-thinning liquid two-phase flows are frequently encountered. In this work, we investigate experimentally the flow characteristics of air/shear-thinning liquid systems in horizontal and slightly inclined smooth pipes. The experiments are performed in a 9-m-long glass pipe using air and three different carboxymethyl cellulose (CMC) solutions as test fluids. Flow pattern maps are built by visual observation using a high-speed camera. The observed flow patterns are stratified, plug, and slug flow. The effects of the pipe inclination and the rheology of the shear-thinning fluid in terms of flow pattern maps are presented. The predicted existence region of the stratified flow regime is compared with the experimental observation showing a good agreement. A mechanistic model valid for air/power-law slug flow is proposed and model predictions are compared to the experimental data showing a good agreement. Slug flow characteristics are investigated by the analysis of the signals of a capacitance probe: slug velocity, slug frequency, and slug lengths are measured. A new correlation for the slug frequency is proposed and the results are promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.