Abstract
This paper provides quantitative experimental data that demonstrate the impact of changing partial water saturation on the static elastic and strength (UCS) properties of gas shales from two different unconventional plays. To achieve this goal, a testing set-up and experimental methodology based on the control of total suction were specifically developed. Two core samples from different unconventional shale gas reservoirs were tested. The obtained results clearly show a significant dependence of the Young's modulus on total suction, where a non-linear decrease of stiffness higher than 50% can be observed when suction is reduced during a wetting process. On the other hand, the Poisson's ratio is not highly influenced by different saturation states; it can be considered constant for suction values greater than 10 MPa. A significant impact on the uniaxial compressive strength was also observed, where a 20% decrease of this strength parameter was measured when gas shales are conditioned to lower suction value. To include the observed behavior of gas shales in elastic constitutive model, an empirical relationship to express the dependence of Young's modulus on suction is proposed. Besides a better understanding of the behavior of gas shales during the drilling procedures and hydraulic fracturing phase, the findings of this study are also of great relevance to understand the impact that exposure of core samples to non-controlled air humidity may have on the results of laboratory tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Rock Mechanics and Mining Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.