Abstract

First-principles calculations are used to study the structural, electronic, transport and optical properties of buckled bismuthene with the adsorption of various gas molecules such as CO, O2, H2O, NH3, SO2, NO and NO2. By considering the van der Waals interactions between the gas molecules and buckled bismuthene, we find that the buckled bismuthene shows superior gas sensing performance to other 2D materials such as graphene and MoS2. The adsorption of CO, O2, H2O and NH3 molecules is physisorption, whereas SO2, NO and NO2 are chemisorbed on the buckled bismuthene with large charge transfer and strong adsorption energy. After adsorption, charges are transferred from buckled bismuthene to the molecules and the quantum conductance is changed by the adsorbed molecules. Furthermore, the work function of buckled bismuthene is changed with the adsorption of different molecules. Our results show that the electronic, transport and optical properties of buckled bismuthene are sensitive to the adsorption of gas molecules, which suggests that buckled bismuthene holds great potential for application in gas sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.