Abstract
Gas recognition is essential in an electronic nose (E-nose) system, which is responsible for recognizing multivariate responses obtained by gas sensors in various applications. Over the past decades, classical gas recognition approaches such as principal component analysis (PCA) have been widely applied in E-nose systems. In recent years, artificial neural network (ANN) has revolutionized the field of E-nose, especially spiking neural network (SNN). In this paper, we investigate recent gas recognition methods for E-nose, and compare and analyze them in terms of algorithms and hardware implementations. We find each classical gas recognition method has a relatively fixed framework and a few parameters, which makes it easy to be designed and perform well with limited gas samples, but weak in multi-gas recognition under noise. While ANN-based methods obtain better recognition accuracy with flexible architectures and lots of parameters. However, some ANNs are too complex to be implemented in portable E-nose systems, such as deep convolutional neural networks (CNNs). In contrast, SNN-based gas recognition methods achieve satisfying accuracy and recognize more types of gases, and could be implemented with energy-efficient hardware, which makes them a promising candidate in multi-gas identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Biomedical Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.