Abstract

Physical plasma is one consequence of gas ionization, i.e. its dissociation of electrons and ions. If operated in ambient air containing oxygen and nitrogen, its high reactivity produces various reactive oxygen and nitrogen species (RONS) simultaneously. Technology leap innovations in the early 2010s facilitated the generation of gas plasmas aimed at clinics and operated at body temperature, enabling their potential use in medicine. In parallel, their high potency as antimicrobial agents was systematically discovered. In combination with first successful clinical trials, this led in 2013 to the clinical approval of first medical gas plasma devices in Europe for promoting the healing of chronic and infected wounds and ulcers in dermatology. While since then, thousands of patients have benefited from medical gas plasma therapy, only the appreciation of the critical role of gas plasma-derived RONS led to unraveling first fragments of the mechanistic basics of gas plasma-mediated biomedical effects. However, drawing the complete picture of effectors and effects is still challenging. This is because gas plasma-produced RONS not only show a great variety of dozens of types but also each of them having distinct spatio-temporal concentration profiles due to their specific half-lives and reactivity with other types of RONS as well as different types of (bio) molecules they can react with. However, this makes gas plasmas fascinating and highly versatile tools for biomolecular redox research, especially considering that the technical capacity of increasing and decreasing individual RONS types holds excellent potential for tailoring gas plasmas toward specific applications and disease therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call