Abstract
Rotationally resolved vibrational spectra of DyO and DyO+ in a molecular beam are obtained by IR excitation from the X8 ground state and from high-n Rydberg states of DyO using an infrared free electron laser. Vibrational excitation is detected either by resonance enhanced multiphoton ionisation from X8(v = 1) or by autoionisation of Rydberg states converging to DyO+(v = 1). For most heavy molecules, the large spectral width of an infrared free electron laser does not allow for rotational resolution. In DyO and DyO+ the P, Q, and R transitions can be resolved due to the high angular momentum in their ground states. For 164DyO a vibrational constant of ωe = 847.5(2) cm-1 and a vibrational anharmonicity of ωeχe = 2.9(1) cm-1 are deduced. For the 161DyO+ cation a transition frequency of ΔG1/2 = 907(1) cm-1 is found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.