Abstract

Gas-phase thermolysis reaction of formaldehyde diperoxide (1,2,4,5-tetroxane) was performed in an injection chamber of a gas chromatograph at a range of 463–503 K. The average Arrhenius activation energy and pre-exponential factor were 29.3 ± 0.8 kcal/mol and 5.2 × 10 13 s −1, respectively. Critical points and reaction paths of the ground singlet and first triplet potential energy surfaces (PES) were calculated, using DFT method at BHANDHLYP/6-311+G ∗∗ level of the theory. Also, G3 calculations were performed on the reactant and products. Reaction by the ground-singlet and first-triplet states turned out to be endothermic and exothermic, respectively. The mechanism in three steps seemed to be the most probable one. An electronically non-adiabatic process appeared, in which a crossing, at an open diradical structure, from the singlet to the triplet state PES occurred, due to a spin–orbit coupling, yielding an exothermic reaction. Theoretical kinetic constant coming from the non- adiabatic transition from the singlet to the triplet state agrees with the experimental values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.