Abstract

Gas-phase studies of the retinal protonated Schiff base chromophore are reviewed. The use of action spectroscopy has solidified the understanding of the spectral-tuning mechanisms of this important chromophore. Ion-mobility spectrometry and gas phase femtosecond pump-probe spectroscopy studies indicate that several of the remarkable photo-isomerization properties of the chromophore such as its specificity and ultrafast nature are intrinsic properties of the chromophore. With a firm understanding of the properties of the isolated retinal chromophore in terms of spectroscopy and dynamics, the influence of the protein is becoming better understood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.