Abstract
The flash pyrolysis of trans 3-pentenenitrile (3-PN, CH3-CH[double bond, length as m-dash]CH-CH2-CN) was studied by combining the results of VUV photoionization mass spectra with broadband microwave spectra recorded as a function of the temperature of the pyrolysis tube. The two separated functional groups (vinyl and nitrile) open up isomerization as an initial step in competition with unimolecular dissociation. Primary products were detected by keeping the 3-PN concentration low and limiting reaction times to the traversal time of the gas in the pyrolysis tube (∼100 μs). The reaction is quenched and products are cooled by expansion into vacuum before interrogation over the 8-18 GHz region using chirped-pulse broadband methods. 118 nm VUV photoionization of the same reaction mixture provides a means of detecting all products with ionization potentials below 10.5 eV with minimal fragmentation. These results are combined with a detailed computational investigation of the C5H7N and related potential energy surfaces, leading to a consistent picture of the unimolecular decomposition of 3-PN. Loss of two H-atoms to form a 79 amu product is proven from its microwave transitions to contain trans-Z-2,4-pentadienenitrile, while no pyridine is observed. Methyl loss, HCN loss, and breaking the central C(2)-C(3) bond all occur following isomerization of the position of the double bond, thereby opening up low-energy pathways to these decomposition channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.