Abstract

Unique interface reactions at the surface of sea-salt particles have been suggested as an important source of photolyzable gas-phase halogen species in the troposphere. Many factors influence the relative importance of interface chemistry compared to aqueous-phase chemistry. The Model of Aerosol, Gas, and Interfacial Chemistry (MAGIC 2.0) is used to study the influence of interface reactions on gas-phase molecular halogen production from pure NaCl and NaBr aerosols. The main focus is to identify the relative importance of bulk compared to interface chemistry and to determine when interface chemistry dominates. Results show that the interface process involving Cl-(surf) and OH(g) is the main source of Cl2(g). For the analogous oxidation of bromide by OH, gaseous Br2 is formed mainly in the bulk aqueous phase and transferred across the interface. However, the reaction of Br-(surf) with O3(g) at the interface is the primary source of Br2(g) under dark conditions. The effect of aerosol size is also studied. Potential atmospheric implications and effects of interface processes on aerosol pH are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.