Abstract
AbstractFriction modifier additives play a crucial role in controlling friction and wear of lubricated tribological systems. Model experiments in a controllable atmosphere performed by integrating a tribometer into a system of in situ surface analytical methods in vacuum can give insights into the additives functionality. In this work, thin, well‐defined layers of an organic friction modifier (OFM) are adsorbed onto an iron oxide surface by means of an effusion cell immediately before measuring friction and wear. The results show that contrary to the assumption that homogeneous layers are formed, this OFM accumulates in droplets on the surface. Droplet number and radius increase with evaporation time. In friction tests, the smallest friction values are found for a low coverage of droplets. For larger droplets, friction increases due to a capillary neck of additive that forms between the sliding surfaces and is dragged along during the friction test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.