Abstract
Gas-phase infrared multiple photon dissociation (IRMPD) spectra have been recorded for the conjugate bases of a series of amino acids (Asp, Cys, Glu, Phe, Ser, Trp, Tyr). The spectra are dominated by strong symmetric and antisymmetric carboxylate stretching modes around 1300 and 1600 cm(-1), respectively. Comparison of the experimental spectra with spectra calculated at the DFT level suggests a carboxylate structure for all species investigated, which is in contrast with what has recently been suggested in this journal for deprotonated cysteine [J. Am. Chem. Soc. 2007, 129, 5403-5407]. In addition, the IR spectrum of the conjugate base of tyrosine is also unambiguously that of a carboxylate ion and not that of a phenoxide ion. In sharp contrast with the conjugate bases of other amino acids investigated here, the aspartate and glutamate anions show very broad, hardly resolved spectral features. We present qualitative experimental evidence indicating that this can be attributed to the formation of a proton bridge between the backbone and side chain carboxylate groups. The large amplitude motion of this shared proton, coupling to virtually all other vibrational modes, causes extensive spectral broadening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.