Abstract

The hitherto elusive oxaziridine molecule (cyclo-H2CONH) - an optically active, high energy isomer of nitrosomethane (CH3NO) - is prepared in processed methane-nitrogen monoxide ices and detected upon sublimation in the gas phase. Electronic structure calculations reveal likely routes via addition of carbene (CH2) to the nitrogen-oxygen double bond of nitrosyl hydride (HNO). Our findings provide a fundamental framework to explore the preparation and stability of racemic oxaziridines exploited in chiral substrate-controlled diastereoselective preparation such as Sharpless asymmetric epoxidation, thus advancing our fundamental understanding of the preparation and chemical bonding of strained rings in small organic molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.