Abstract

We demonstrate gas-phase (aerosol) generation of diameter-controlled carbon nanotubes (CNTs) by employing size-controlled monodisperse nickel nanoparticles produced by the combination of pulsed laser ablation and electrostatic classification. The electrostatic classifier sorted agglomerated mono-area nickel particles, and then a subsequent heating process at ∼ 1200 °C created sintered single primary particles with very narrow size distribution. These isolated single primary particles were then sent to an aerosol reactor where free-flight CNTs were grown with acetylene and hydrogen mix at temperature of ∼ 750 °C. The resulting CNTs formed in this continuous gas-phase process were found to have a uniform diameter, which is commensurate with the diameter of the size-controlled catalytic nickel particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.