Abstract

The thermal oxidation of alloy nanoparticles (NPs) composed of nickel and a noble metal was investigated by high-resolution electron microscopic observations of the NPs oxidized in a gas phase under different oxidation conditions. When Ni0.8Au0.2 NPs were heated with oxygen from room temperature, oxidation progressed to form Au–NiO core–shell structures, however, the Au core spilled out by breaking the NiO shell at high temperatures. In contrast, when the alloy NPs were subjected to rapid thermal oxidation, which was enabled by heating the NPs at high temperatures (≥500 °C) and then abruptly exposed to oxygen, oxidation advanced anisotropically such that a NiO island protruded and built up to form a NiO nanorod. This resulted in the formation of Au-tipped NiO nanorods in which a hemispherical Au tip bonded to a NiO nanorod via a Au {111}/NiO{100} interface. We found that the relative sizes of Au and NiO in Au-tipped NiO nanorods were easily and widely controlled by changing the Au mole fraction (0.05–0.8) of the alloy NPs. Similarly, rapid thermal oxidation of Ni–Pt NPs generated Pt-tipped NiO nanorods in which a spherical Pt tip was half-embedded in a NiO nanorod. The present gas-phase approach has great potential for fabricating functional asymmetric hybrid nanostructures in clean conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.