Abstract

The atmospherically highly relevant methylsulfonyl radical (CH3SO2(•)) was generated by high-vacuum flash pyrolysis (HVFP) of allylmethylsulfone and isolated in an argon matrix at 10 K; the allyl radical formed as the cofragment. Upon thermolysis, the methylsulfonyl radical undergoes partial decomposition, leading to substantial amounts of sulfur dioxide in the matrix. The title compound was characterized through the assignment of eight fundamental IR bands of its CD3 and (13)CH3 isotopologues and the excellent agreement with the B3LYP/6-311+G(3df,3pd) computed harmonic vibrational frequencies. The two most intense absorptions were found at 1267.1 and 1067.6 cm(-1). In extension of this study S-methyl methanethiosulfonate was found to be another suitable, although less efficient, precursor for the gas-phase generation of the methylsulfonyl radical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.