Abstract

Complex organosilicon molecules are ubiquitous in the circumstellar envelope of the asymptotic giant branch (AGB) star IRC+10216, but their formation mechanisms have remained largely elusive until now. These processes are of fundamental importance in initiating a chain of chemical reactions leading eventually to the formation of organosilicon molecules-among them key precursors to silicon carbide grains-in the circumstellar shell contributing critically to the galactic carbon and silicon budgets with up to 80% of the ejected materials infused into the interstellar medium. Here we demonstrate via a combined experimental, computational, and modeling study that distinct chemistries in the inner and outer envelope of a carbon star can lead to the synthesis of circumstellar silicon tricarbide (c-SiC3) as observed in the circumstellar envelope of IRC+10216. Bimolecular reactions of electronically excited silicon atoms (Si(1D)) with allene (H2CCCH2) and methylacetylene (CH3CCH) initiate the formation of SiC3H2 molecules in the inner envelope. Driven by the stellar wind to the outer envelope, subsequent photodissociation of the SiC3H2 parent operates the synthesis of the c-SiC3 daughter species via dehydrogenation. The facile route to silicon tricarbide via a single neutral-neutral reaction to a hydrogenated parent molecule followed by photochemical processing of this transient to a bare silicon-carbon molecule presents evidence for a shift in currently accepted views of the circumstellar organosilicon chemistry, and provides an explanation for the previously elusive origin of circumstellar organosilicon molecules that can be synthesized in carbon-rich, circumstellar environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.