Abstract

The performance (activity, stability, enantioselectivity and productivity) of the commercial ketoreductase immobilized on non-porous glass supports was investigated as functions of the water activity and the reaction temperature in a continuous gas phase reactor. The enantioselective reduction of 2-butanone to ( S)-2-butanol with the in situ regeneration of β-nicotinamide adenine dinucleotide phosphate by 2-propanol catalyzed by the immobilized ketoreductase was used as a model reaction. The activity, stability and enantioselectivity were strongly influenced by the water activity and the reaction temperature. The optimal water activity and reaction temperature were obtained at 0.8 and 313–323 K in terms of the productivity, respectively. Successfully, the enantioselectivity for the gas phase system attained the level identical to that for the aqueous phase system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.