Abstract
The gas phase elimination kinetics of racemic methyl mandelate was determined in a static system, and yielded on decomposition benzaldehyde, methanol, and carbon monoxide. The reaction was homogeneous, unimolecular, and follows a first-order law in the temperature range 379.5-440 degrees C and pressure range of 21.5-71.1 Torr. The variation of the rate coefficient with temperature is expressed by the following Arrhenius equation: log k1 = (12.70 +/- 0.14)-(206.5 +/- 1.9) kJ/mol (2.303RT)(-1). The theoretical estimations of the kinetics and thermodynamics parameters were carried out using DFT methods B3LYP, B3PW91, MPW1PW91, and PBEPBE. Calculation results are in reasonably good agreement with the experimental energy and enthalpy values when using the PBEPBE DFT functional. However, regarding the entropy of activation, the MPW1PW91 functional is more adequate to describe the reaction. These calculations imply a molecular concerted nonsynchronous mechanism involving a two-step process, where the formation of the unstable alpha-lactone intermediate is the rate-determining factor. The lactone intermediate rapidly decarbonylates to produce benzaldehyde and carbon monoxide. The transition state is late in the reaction coordinate, resembling the lactone configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.