Abstract

Nucleophilic substitution covalent modification ion/ion reactions were carried out in a linear quadrupole ion trap between the doubly protonated peptides KGAILKGAILR, RARARAA, and RKRARAA and isomers of either singly deprotonated 3- or 4-sulfobenzoic acid (n-SBA) esterified with either N-hydroxysuccinimide (NHS) or 1-hydroxy-7-aza-benzotriazole (HOBt). The cation/anion attachment product, through which the covalent reaction occurs, was isolated and subjected to dipolar DC (DDC) activation to generate covalently modified product over the ranges of DDC activation energies and times. The resulting survival yields were used to determine reaction rates, and Tolmachev's effective ion temperature was used to extract Arrhenius and Eyring activation parameters. It was found that the kinetics determined under these conditions are highly sensitive to the identities and locations of the nucleophilic sites on the peptides, the leaving groups on the reagent, and the location of the attachment sites on the reagent and analyte. Depending upon the identity of the analyte/reagent combination, significant variations in activation energy or entropy (or both) were both found to underlie the measured rate differences. The determination of dissociation kinetics under DDC conditions and application of Tolmachev's effective ion temperature treatment enables unique insights into the dynamics of gas-phase covalent bond formation via ion/ion reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.