Abstract

In the complex formed between the calcium cation (Ca2+) and a deprotonated HisHis dipeptide, the complex adopts a charge solvation (CS) structure. Ca2+, a weak binding main group metal cation, interacts with the oxygens of the peptide carbonyl moiety and the deprotonated C-terminus. In contrast, the much stronger binding Ni2+ cation deprotonates the peptide nitrogen and induces an iminolate (Im) ligand structure in the [Ni(HisHis-H)]+ complex ion. The combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and quantum chemistry evidence these two representative binding motifs. The iminolate coordination pattern identified and characterized in the [Ni(HisHis-H)]+ complex serves as a model case for nickel complexes of poly-histidyl-domains and is thereby also of interest to better understand the fundamentals of immobilized metal ion affinity chromatography as well as of Ni co-factor chemistry in enzymology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.